
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

 Use of Dijkstra's Algorithm for NextBot Navigation

in Source Engine Games

Sebastian Hung Yansen - 135230701

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1sebastianhung25@gmail.com, 13523070@std.stei.itb.ac.id

Abstract— This paper explores the implementation of Dijkstra's

algorithm within the NextBot navigation system in Source Engine

games such as Garry's Mod. Dijkstra's algorithm, a classic method

for solving the shortest path problem in graph theory, plays a

crucial role in enabling NextBots—AI entities used in Source

Engine games—to compute efficient paths in complex 3D

environments. By leveraging the Source Engine's navigation mesh

system, NextBots dynamically calculate paths, ensuring responsive

and adaptive behaviors in gameplay scenarios. This paper provides

an in-depth analysis of Dijkstra’s algorithm, its application to

pathfinding in video games, and a case study implementation in

Garry's Mod, demonstrating its effectiveness and relevance in

modern gaming AI.

Keywords—Dijkstra’s Algorithm, Source Engine, Shortest Path

Problem, Video Game AI

I. INTRODUCTION

Graph theory is a really old subject, a study of mathematical

structures used to model relations between objects. As old as it

is, it is still being used even today to solve everyday problems

including route navigation, network design, and web navigation

among other things. One of its everyday uses that is still being

used to this day, especially with the rise of 3d graphics, are video

games.

Video games started back in the 1950s when computer

scientists designed a few simple games and simulations to be

used in minicomputers and mainframes. Then in the 1970s,

video games spread out into different formats which includes

home consoles with the Magnavox Odyssey and arcade

machines with Pong. Seeing the success of both consumer

products, many companies started banking in on the video game

market to recreate or even innovate many different games to this

day.

Right next to the rise of video game consumerism, video

game development also progressed significantly. Graphics

evolved from the use of 8-bit sprites up until the use of real time

ray tracing to produce hyper-realistic graphics. Gameplay

evolved from just the player being able to run and jump in a 2d

space to being able to capitalize on physics. Video games also

make use of artificial intelligence (AI) and it’s used in almost

every video game. AI is mostly used for non-playable-characters

(NPC) in video games. NPCs are one of the elements used in

video games to immerse the player by being the player’s

sidekick, characters to make a place feel alive, as well as

enemies to challenge and threaten the player.

There are many variations of AI systems that are used in

different video games. One of which is NextBot, an AI system

used in games made using the Source engine such as Team

Fortress 2, Left 4 Dead, and Garry’s Mod. A NextBot is different

to normal NPCs where a NextBot uses an “actor” to run through

specific factors when a specific event occurs. A NextBot also

uses a navigation mesh, a data structure used by AI to aid in

pathfinding through complicated spaces. Even though it uses a

different structure, at its core it is still an AI and it uses core AI

aspects.

In videogames, especially those that allow the characters to

move in a 3d space, creating a good AI is important to immerse

the player and there are many aspects in creating good AI, one

of which is pathfinding. Pathfinding is the search for the shortest

route between two points. In video games, pathfinding is

commonly used by the enemy AI to respond to the player’s

actions. It is commonly used for the AI to roam a certain area or

to chase or follow the player. Pathfinding itself is based on

Dijkstra’s algorithm, an algorithm for finding the shortest paths

between two nodes. This paper will discuss and explore how this

algorithm is implemented within NextBot AI in source games.

II. THEORETICAL BASIS

A. Graph

A graph at its core is a diagram that represents data in an

organized way. A graph shows the relationships between

variables or nodes. Graph G is defined as G = (V, E), in which:

- V is a non-empty set of vertices/nodes = {v1, v2, v3, …, vn}

- E is a set of edges that connect a pair of nodes = {e1, e2,

e3, …, en}

B. Graph Types

Based on the presence of rings or double edges, graphs are

classified into two types”

a) Simple graph

A graph that doesn’t have a ring or double edges

b) Nonsimple graph

Graf that contains rings or double edges

mailto:1sebastianhung25@gmail.com
mailto:13523070@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Unsimple-graphs are further divided into:

a) Multi-graph

A graph that contains multiple edges that connects the

same nodes.

b) Pseudo-graph

A graph that contains a ring

A visual representation of the graphs can be seen here:

Fig. 2.1. Example of simple and nonsimple graphs

(Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf)

Based on the direction, graphs can be divided into two types:

a) Undirected graph

A graph whose edges have no direction.

b) Directed graph

A graph whose edges have direction symbolled with an

arrow that points towards a single direction.

Fig. 2.2. Example of undirected and directed graph

(Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf)

C. Graph Terminology

a) Adjacent

Two nodes that are both directly connected.

b) Incidency

A node is incident with an edge if the node is one of the

two nodes the edge connects

c) Isolated Vertex

A node that has no sides.

d) Null graph

A graph whose set of edges is empty.

e) Degree

The number of edges adjacent to the node.

f) Path

A set of edges from one node to another that forms a

continuous path.

g) Cycle or Circuit

A set of edges from one node to another just like a path

with the only difference being that the path starts from

and ends at the same node

h) Connected

A connected graph is a graph where every node is

connected

i) Subgraph

A graph that is a subset of another graph sharing some or

all of its nodes and edges

j) Spanning Subgraph

A graph that contains all of the nodes from a parent graph

but may not contain all of the edges

k) Cut-Set

A cut-set is a set of edges, when removed from a graph,

renders the graph disconnected.

l) Weighted Graph

A graph in which each edge is assigned a value (weight)

III. THE SHORTEST PATH PROBLEM

The shortest path problem is a problem that involves finding

the shortest path between two vertices or nodes within a graph.

The solution for the problem is the minimized sum of the

weights of all edges passed. For example, let’s say there is a

small city that can be represented by a map. The vertices or

nodes represent the different places and branching roads whilst

the road is represented by the edges with weights that represent

the travel time or the distance. Many different algorithms are

used to find solutions such as the Floyd-Warshall algorithm and

Dijkstra’s Algorithm. For this paper, the author will touch more

on Dijkstra’s algorithm.

Dijkstra’s algorithm is one of the algorithms used to find

solve the shortest path problem. Dijkstra’s algorithm work by

picking the unvisited vertex with the lowest distance, calculates

the distance through it to each unvisited neighbor, and updates

the neighbor’s distance if smaller. For each step, it is necessary

to record the information of the shortest distance between 2

nodes and whether or not the node has been visited.

There are two approaches in this algorithm: using Prim’s

Algorithm or using a priority queue. Prim’s Algorithm is used

to find a Minimum Spanning Tree (MST) of a graph that

connects all nodes with each other, with the minimum total edge

weight, and without forming circuits. Dijkstra’s Algorithm with

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

a priority queue is used to find the shortest path from a single

source vertex to all other vertices in a graph, and it optimizes for

distances, not tree structure.

A priority queue is typically implemented using a heap, a

specialized tree-based data structure that allows efficient

insertion of elements with priorities and retrieval of the element

with the highest (or lowest) priority, usually in O(log n) time per

operation. In Dijkstra’s Algorithm, the priority aspect is the

shortest known distance from the source, making the heap an

essential tool for efficiently managing the vertices to process.

IV. IMPLEMENTATION

The author will use the game Garry’s Mod for implementing

Dijkstra’s algorithm in source games. The author chose Garry’s

Mod as the game reference because the game is a physics

sandbox game that allows the player to do anything they want

with no set objective. The player can also upload and download

custom user created content through mods. Through the custom

user created content, the author is able to download mods

required for implementation as well as view and edit the node

graph within the game’s map.

Fig. 4.1. Node graph within the map in Garry’s Mod

(Source: Author Documentation)

The map’s node graph has been automatically generated from

the game itself. The weights of each edge can be approximated

using a ruler within the game. After converting the part of the

map into a graph, the modeled graph is as follows:

Fig. 4.2. Modeled Node graph based on the map

(Source: Author Documentation)

Defining the problem is quite simple. Suppose there is an

enemy and a player. The enemy’s objective is to chase the player

and eliminate them. The enemy automatically targets every

player and/or NPC within their distance. Suppose the location of

the enemy is at node I and the location of the player is at node

O. What would be the shortest path the enemy could take?

The author uses Lua for implementation. Lua is used because

Garry’s Mod uses Lua as the primary scripting language. It is

also used for its simplicity, speed, and flexibility. Not only that,

it used in many games for modding and allows developers to

write custom scripts to create custom gameplay elements,

including NPCs, entities, and user interfaces.

The author uses the Garry’s Mod NextBot API. It uses the

Source engine's navigation mesh system. The NextBot API

abstracts the low-level pathfinding mechanics to assist the

programmer. The programmer only needs to interact with high-

level functions and have the Source engine internally handle the

computation. The implementation of Lua is as follows:

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

function ENT:RecomputeTargetPath()

 if CurTime() - self.LastPathingInfraction <

PATH_INFRACTION_TIMEOUT then

 return

 end

 local targetPos = self.CurrentTarget:GetPos()

 trace.start = targetPos

 trace.endpos = targetPos - VECTOR_HIGH

 trace.filter = self.CurrentTarget

 local tr = util.TraceEntity(trace, self.CurrentTarget)

 if tr.Hit and util.IsInWorld(tr.HitPos) then

 targetPos = tr.HitPos

 end

 local rTime = SysTime()

 self.MovePath:Compute(self, targetPos)

end

The pathfinding itself is specifically called with

self.MovePath:Compute(self, targetPos). The function instructs

the bot to calculate a path from its current position to the target’s

position (targetPos) using the navmesh. Once the path has been

computed, self.MovePath:Update(self) moves the NPC along

the calculated path. The bot would dynamically follow the path

while continuously checking for obstacles or changes in the

environment. Not only that, the bot would dynamically calculate

the shortest path in case the player tries to run away through

branching paths.

While the implementation of Dijkstra’s algorithm is not seen

directly, it is possible to implement the algorithm and not use

the NextBot API. Although the calculation and computation

may be more complex, take more time, and can even be heavier,

it allows us to see the process directly. The code is as follows:

local function dijkstra(graph, startNode, targetNode)

 local distances = {}

 local previous = {}

 local unvisited = {}

 -- Initialize distances and unvisited set

 for node, _ in pairs(graph) do

 distances[node] = math.huge

 unvisited[node] = true

 end

 distances[startNode] = 0

 while next(unvisited) do

 -- Find the unvisited node with the smallest distance

 local currentNode = nil

 local shortestDistance = math.huge

 for node in pairs(unvisited) do

 if distances[node] < shortestDistance then

 currentNode = node

 shortestDistance = distances[node]

 end

 end

 unvisited[currentNode] = nil

 for neighbor, cost in pairs(graph[currentNode]) do

 if unvisited[neighbor] then

 local newDistance = distances[currentNode] + cost

 if newDistance < distances[neighbor] then

 distances[neighbor] = newDistance

 previous[neighbor] = currentNode

 end

 end

 end

 end

 local path = {}

 local current = targetNode

 while current do

 table.insert(path, 1, current)

 current = previous[current]

 end

 -- Return the path and the total cost

 return path, distances[targetNode]

end

Based on the node graph and the problem that has been

defined, we can define the graph as an adjacency list as follows:

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

local graph = {

 A = {B = 1370},

 B = {A = 1370, P = 640, C = 360},

 C = {B = 360, D = 760},

 D = {C = 760, E = 660},

 E = {D = 660, F = 450, H = 670},

 F = {E = 450, J = 880, G = 440},

 G = {F = 440, K = 880},

 H = {I = 220, M = 670},

 I = {H = 220},

 J = {F = 880, M = 770},

 K = {G = 880, L = 770},

 L = {K = 770, M = 440},

 M = {J = 770, L = 440, N = 700},

 N = {M = 700, O = 480, P = 430},

 O = {N = 480},

 P = {B = 640, N = 430}

}

With the adjacency list combined with Dijkstra’s algorithm,

we can find the shortest path and answer the problem.

local path, cost = dijkstra(graph, “I”, “O”)

To be able to view the results based on the nodes and distance,

the code can be implemented in python to see the output.

Fig. 4.3. Implementation in Python

(Source: Author Documentation)

Fig. 4.4. Implementation output

(Source: Author Documentation)

Based on the output, we can answer that the shortest path the

enemy could take to reach the player is through nodes I, H, E, F,

J, M, N, O with 4170 being the total sum of the weight.

V. CONCLUSION

Based on the analysis and the implementation that has been

done, it can be concluded that Dijkstra’s algorithm is an

effective and reliable algorithm for finding the shortest route

therefore solving the shortest path problem. Its systematic

approach to exploring nodes and updating distances ensures

accuracy and optimality in results, making it a foundational tool

in both theoretical graph studies and practical applications.

NextBot AI dynamically calculates paths and finds the

shortest path every few milliseconds to prepare in case the

player runs away through many branching paths.

VI. ACKNOWLEDGMENT

The writer of this paper would like to thank the Lord for His

guidance and mercy for giving me the ability and strength to

finish this paper. The writer would also like to thank their

parents, friends, and teacher for their support in knowledge and

material. The writer is grateful to everyone that they’ve met and

those who’ve helped the writer go through tough parts of their

life.

REFERENCES

[1] Munir, R., Matematika Diskrit, 4th ed. Bandung: Informatika Bandung,

2010, p. 356

[2] Valve Developer Community, "NextBot," Valve Developer Community,

Oct. 8, 2023. [Online]. Available:

https://developer.valvesoftware.com/wiki/NextBot

[3] Booth, M., "The AI Systems of Left 4 Dead," 2009. [Online]. Available:

https://steamcdn-

a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf

[4] Javaid, A., "Understanding Dijkstra's algorithm," SSRN 2340905, 2013.

[Online]. Available:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340905.

[5] Schrijver, A., "On the history of the shortest path problem," Documenta

Mathematica, vol. 17, no. 1, pp. 155–167, 2012.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung,8 Januari 2025

Sebastian Hung Yansen/13523070

https://developer.valvesoftware.com/wiki/NextBot
https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340905

